
J .  Fluid Mech. (1981), vol. 108, pp.  159-170 

Printed in Great Britain 
159 

On the evolution of disturbances at an inviscid interface 

By P. N. SHANKAR 
Aerodynamics Division, National Aeronautical Laboratory, Bangalore-560 037, India 

(Received 29 January 1980) 

The initial-value problem for the evolution of the interface q(x,t) separating two 
unbounded, inviscid streams is considered in the framework of linearized analysis. 
Given the initial shape y = eqo(x) of the interface at  t = 0 the objective is to calculate 
the interface shape ~ ( x ,  t )  for later times. First, it is shown that, if the vortex sheet is of 
infinite extent, if surface tension is absent and if the two streams are of the same 
density, the evolution is given by 

~ ( x ,  t )  = B( 1 -a)-lRe [{( 1 -a )  + (1  +a) i }qo{x -  h((1 +a)  + (1  -a)  i) t>],  

where a (+ 1) is the ratio of the speeds of the streams, provided the initial interface 
shape eqo(x) is analytic and its Fourier transform decays sufficiently rapidly. An 
interesting consequence is that it is possible, under certain circumstances, for the 
interface to develop singularitiesafter a finite time. Next it is shown that when the two 
streams move at the same speed (a = 1) the growth of 71 is given by 

q(z, t )  = €yo(" - t )  + €t  &qo(z - t ) /dz 

with mild restrictions on v0(x ) .  The major effect of surface tension, it is found, is to 
prevent the occurrence of singularities after a finite time, a distinct possibility in its 
absence. Finally the vortex sheet shed by a semi-infinite flat plate is considered. The 
unsteady mixed boundary-value problem is formally solved by using parabolic co- 
ordinates and Fourier-Laplace transforms. 

1. Introduction 
Consider two inviscid, incompressible fluid streams of infinite extent in uniform 

parallel motion, one on top of the other, with the interface q(x, t )  initially close to the 
plane y = 0 (see figure 1) .  Let a and p be the ratios of their speeds and densities 
respectively, i.e. a = U2/U, and p = p2/pI.  Gravity is assumed to act in the negative y 
direction. We study here the evolution of the interface q(x,  t )  given the initial interface 
shape eqo(x) particularly when the interface is Helmholtz unstable. The analysis is 
throughout in the framework of linear theory. The infinite vortex sheet is considered 
first, following which the semi-infinite vortex sheet, i.e. that shed by a semi-infinite 
flat plate, is considered. 

The study of the initial-value problem for surface wave motions is classical; indeed, 
Lamb (1932) describes in detail the evolution of surface waves from a localized initial 
disturbance and there is now a considerable body of work on the initial-value problem 
when the motions considered are classically stable. On the other hand, for fluid 
motions that are basically unstable the corresponding literature appears to be far less 
extensive. Case (1962) and Birkhoff (1962) have discussed the role of the initial-value 
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FIGURE 1. The interface between two uniform, inviscid streams. 

problem in the study of hydrodynamic stability. Case has pointed out that, while 
modal analysis is indeed useful for physical understanding, the evolution problem 
needs to be studied as individual modal growth rates may not give a true picture of 
the evolution of an actual initial disturbance. Moreover, an initial-value problem 
solved by operational methods is unlikely to miss the continuous spectrum, if it exists, 
as a modal analysis might. 

Work reIated to the present one has been done in the acoustic context by Miles 
(1958), Jones (see, for example, Jones 1972; Jones & Morgan 1972; and Jones 1978 
and other references quoted therein) and Crighton & Leppington (1974). For the 
infinite vortex sheet, the present work complements that of Miles in that an exact 
solution is given for the incompressible case. The concern in the case of the semi- 
infinite vortex sheet, in the acoustic context, is primarily with the possible enhance- 
ment of the acoustic radiation by the instability of an initially plane vortex sheet and 
by interactions at  the trailing edge of the plate. In  the incompressible situation con- 
sidered here the instability is not triggered externally, as in the acoustic case, but by 
the non-planar nature of the initial interface shape. It is to be pointed out that the 
results obtained here do not follow from those of the acoustic case by a limiting 
process. Moreover, it is to be noted that in the acoustic case, where the initial-value 
problem has been considered, the initial interface shape has, naturally, been assumed 
to  be plane; on the other hand, in the incompressible case it is the initial undulation 
which leads to interface growth. A feature of some interest is that the incompressible 
problem permits solution by elementary means without recourse to the Wiener-Hopf 
technique. 

2. Formulation 
Let a and p be the ratios of the speeds and densities respectively of the two streams. 

Let all lengths be normalized by Q / g ,  time by UJg and speeds by U,. Then the 
normalized perturbation potentials q51(x, y, t )  and cjh2(x, y, t )  valid in regions 1 and 2 
satisfy 

(1) Wq5, = V2& = 0 
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in their respective regions of validity. Since we require the perturbation velocities to  
decay far from the interface, the boundary conditions for Iyf -+ m are 

IVcjh,I+O for y+m, lVcjh2/+0 for y-+-co. (2) 

The kinematic conditions for the continuity of the interface and the pressure across 
it require the linearized boundary conditions (for t > 0 )  

(3.1) 

on y =  0, x =- 0. (3-2) I (3.3) 

T t  + T z  = cjhly 

Tt + UTz = q52y 

At + 41% + T = P U 2 t  + 4 2 2  + T I  
Note that in the above we have ignored surface tension, whose effects will be 

considered in 3 3.3. For the infinite vortex sheet (3) also hold on y = 0,  x < 0. On the 
other hand for the vortex sheet shed by a flat plate, the rigid plate requires that the 
normal components of velocity vanish on it : 

T ( X , t )  = 0,  x < 0 ;  

q51, = 0, cjh2y = 0 on y = 0, x < 0. 
(4) 

Now for initial Conditions we assume that ~ ( x ,  0 )  = ET,,(z) (e  < I)  is prescribed and 
that the potentials q51(x, y, 0 )  and cjh2(x, y, 0 )  correspond to  steady flow along a hard 
boundary given by q0(x). Physically the problem amounts to determining the 
shape of the interface at later times if the thin wall separating the two streams were 
suddenly to  dissolve or disappear through the side wall of a wind or water tunnel. 

For the infinite vortex sheet the formulation is now complete. For the semi-infinite 
vortex sheet one possibly needs further to  specify a condition a t  the trailing edge of 
the plate to  ensure uniqueness. Orszag & Crow (1970) consider what they call a 
‘rectified Kutta condition’ and a ‘full Kutta condition’. It appears to  us that the 
rectified Kutta condition, where a steady (time independent) solution is added to the 
modal solution, has little basis; in fact in the initial-value problem it certainly cannot 
be incorporated, even if one wished to do so. The full Kutta condition, requiring the 
flow to leave the trailing edge tangentially, seems quite reasonable but the artifice that 
was possible in the modal analysis does not appear possible here in the initial-value 
problem. We observe that the usual source of non-uniqueness in conventional aerofoil 
theory, the multiple-connectedness of the domain, is absent in the present problem. 
The non-uniqueness here, if any, is a result of the geometry of the boundary, i.e. the 
sharp trailing edge (cf. non-uniqueness in the solution for flow past a sharp corner). 
This being the case, we shall only require that the solution be the one least singular 
a t  the trailing edge. It is recognized that the trailing-edge condition is a source of 
difficulty, but i t  appears that  only a detailed viscous analysis might possibly shed 
light on the issue. 

3. The infinite vortex sheet 
3.1. T h e  formal solution 

Since the method of solution for the problem formulated in 5 2 for the infinite vortex 
sheet is standard we only outline the derivation here. 



162 P. N .  Shankar 

On (a)  Fourier transforming the governing equations for the potentials in the two 
regions, (a) applying the boundary conditions for IyI -+ co, and (c) solving the dif- 
ferential equations in time resulting from the boundary conditions at the interface, 
one finds that the Fourier transform q ( k ,  t )  of q(x ,  t ) ,  provided a and /3 are not both 
unity, is given by 

q(k ,  t )  = &[{l - ik (  1 + ap) (k2( 1 -a)2/l- (p2 - 1) lkl)-i} e p l ( k ) t  

+ (1 +ik(l  +a/?) (k2( 1 - L Z ) ~ P -  (p2 - 1) IkJ)-*}ePe(k)tJ g,(k),  (5.1) 

where ij,(k) is the Fourier transform of qo(x) and the coefficients in the exponents are 

If a = p = 1 the transform is simply given by 

q(k, t )  = se ik t ( l - - ik t ) i jO(k) .  (5.3) 

The interface shape is then given by the inversion formula 

provided the integral exists. One observes that the classical dispersion relation is 
contained in formula (5.2). 

We now consider sufficient conditions under which the integral (6) exists and hence 
constitutes a solution to the initial-value problem. First, if the two streams move a t  
the same speed (a = 1 )  and the lower fluid is denser than the upper one then pl, are 
imaginary for all k and the integral converges under the mild restriction that qo(k)  be 
absolutely integrable. This is the usual case considered, corresponding to  all modes 
being stable. Second, if a + 1 ,  Re {pl, 2} N O(k) as k -+ co and the integral will exist for 
t > 0 only if q,(k) decays sufficiently rapidly for Ikl -+ co. For example, a sufficient 
condition is that ij,(k) - knexp (-ak2) for Ik( -+ 00 with a > 0. An interesting 
possibility is for the solution to exist only for a finite time interval. Say 

qo(k) knexP(-alkl) 

as (kl -+ 00, a > 0; the solution will exist only for some finite time interval 0 < t < T ,  
where T can be easily determined. This phenomenon is connected with the fact, 
pointed out by Birkhoff (1962), that the perturbation problem is ‘not mathematically 
well set in the sense of Hadamard’; Birkhoff also points out that the inclusion of the 
effects of surface tension or viscosity would eliminate this difficulty. It is interesting to  
note that similar difficulties arise in the compressible case. For example Jones & 
Morgan ( 1972) found that exponentially growing (Helmholtz unstable) solutions had 
to be retained to satisfy causality. It is likely, therefore, that  even in the compressible 
case singularities may occur after a finite time in the absence of surface tension or 
viscosity. 

There are two special cases of considerable interest for which explicit formulae are 
obtainable. If the streams are of the same density (p = 1) but move at different speeds 
( x  =I= 1 )  and if the Fourier integral exists, (6) can be immediately integrated, using the 
shift theorem, to give 

~(z, t )  = E (  1 - a)-lRe [{( 1 -a) + (1 +a) i} qo{x- &[( 1 + a) + (1 - a) i] t } ]  , (7) 
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where yo(") has been assumed to  be analytic. On the other hand, if the streams are of 
the same density and move at  the same speed (i.e. a = p = l), it is clear from (5.3) 
that we need only require that vo(x) and dyo/dx be absolutely integrable for the 
integral (6) to exist. Under these mild restrictions we have 

y(x,  t )  = "yo(" - t )  + st dyo(x - t p x .  (8) 

Thus, in this case the growth is linear in time,t as predicted by modal analysis, and 
proportional to the local gradient. We observe that (8) could be obtained by taking the 
limit cz -+ 1 in ( 7 ) ,  but the conditions would then be more restrictive than necessary. 
Further, (8) implies a loss of smoothness in general, as v ( z , t )  now also depends on 
the initial slope. 

It is t o  be noted that there is no difficulty in physically interpreting the case 
a = p = 1 in the context of the initial-value problem as posed. For example this would 
correspond to the situation where the thin wall separating two regions of the same 
fluid is suddenly removed through the side wall of a wind tunnel. I n  fact Lord Rayleigh 
(seeLamb 1932) attributed the flapping of flags and sails to  this instability. However, 
as has been pointed out by Birkhoff (1962), the phenomena under question are likely 
to be greatly influenced by the density of the cloth and the boundary layers on either 
side. 

3.2. Examples 
A few simple examples are now presented to illustrate the results of the last subsection. 
Asiume both streams to be of the same density. 

Consider the initial profile given by yo(x) = exp ( -x2).  Since ij,,(k) - exp ( - $k2)), 
formula ( 7 )  applies and one has 

~ ( s ,  t )  = t.( 1 -a)-l[(  1 - a )  cos v -  ( 1  +a)  sinv] exp{ - ( x -a t )  ( z - t ) } ,  

where v = (1 - a )  t ( z  - $( 1 + a )  t ) .  At any given time the amplitude is bounded and its 
maximum value is of the order of exp {&( 1 - a)2t2), i.e. the growth is even more rapid 
than might be suggested by the modal solutions, each of which grow exponentially. 
One observes also that the peak of the disturbance travels a t  a speed approximately 
equal to the mean of the speeds of the two streams, &(l +a). Figure 2 shows the 
growth of the interface for a = 0 and a = 0.5. 

A considerably different growth is evinced by the profile 

To(") = (1+x2)-', ??,(k) exp(-JkJ) .  

In  order to  simplify the algebra assume counter-flowing streams with a = - 1. Since 
by (5.2) pl, = k it is clear that the integral (6) exists for 0 < t < 1. During this time 
interval formula (7 )  holds and so 

1 y(x ,  t )  = Re [sqo(x - i t ) ]  = - + (1+t)2+X2 

t A referee has kindly given a physical explanation for the result (8). 'When the streams have 
the same speed no energy is fed into the disturbance, but since the densities are the same, there 
is no restoring force either. Hence when the hypothetical barrier separating the streams is 
removed at t = 0 the fluid elements at the interface move in straight trajectories with their 
instantaneous velocity a t  t = 0, dq,,(z- t ) / d z ,  i.e. the interface displacement grows linearly 
with time. ' 
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L -2 
FIGURE 2. The growth of the interface when p = 1 and ~, , (x )  = oxp ( -9). 

--,a = 0; ----, c( = 0.5. 

-1  0 1 2 

X 

FIGURE 3. The evolution of the interface when /3 = 1, a = - 1 and vO(r) = (1 + zz). 
-, no surface tension; - - - -, with surface tension, g = 0.1. 
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Since the streams are in counter-flow a t  the same speed the disturbance does not 
move but just grows in time, becoming unbounded at x = 0 as t + 1 (see figure 3).  The 
solution does not exist for t b 1. We note that the solution breaks down precisely when 
x - it takes on a value corresponding to a pole of the function (1 + z2)-l. I n  the next 
subsection we shall show how surface tension prevents the formation of such 
singularities. 

Finally we assume the fluids to be moving at the same speed and let the initial 
profile be given by v0(x) = (1  - x ~ ) ~ ,  1x1 < 1 and ~ ~ ( x )  = 0 otherwise. Now by (8) 

~ [ ( l - ( ( ~ - t ) ~ } ~ - 6 t ( ~ - t ) { 1 - ( ~ - t t ) ~ ) ~ ] ,  Ix-tl < 1; 

0,  Ix-tl > 1.  

As the disturbance is initially confined to 1x1 < 1 and as its speed is that  of the 
streams the disturbance a t  later times is confined to the region t -  1 < x < t + 1. 
Asymptotically the shape is determined primarily by the initial slope distribution. 

The above examples show the extra information that one obtains by solving the 
initial-value problem. The modal solution determines the growth rate of each mode, 
which is either exponential or linear (a  = 1) in time. However, the evolution of a given 
initial disturbance depends on its spectral composition and the resulting superposition 
leads to  rates of growth (for example of the peak amplitude) which depend crucially 
on the initial shape. Thus, all other factors being the same, two different initial 
disturbances can have totally different growth patterns although the basic modes 
are the same. Thus while modal analysis does indicate stability or instability only a 
solution of the initial-value problem can determine the actual growth rate of a given 
disturbance. 

3.3. The effects of capillarity 

We have so far assumed the interface to be free of surface tension effects. One conse- 
quence was that it was possible for the interface to develop a discontinuity after a 
finite time. It is to  be expected that, since surface tension always makes extremely 
short ripples stable, its inclusion in the analysis should prevent the formation of 
singularities. We shall now show that this is indeed so. 

The effect of capillarity is only felt through the modification of the interface 
boundary condition (3.3).  The dynamical condition a t  the interface, in its linearized 
form, is now (Lamb 1932) 

where T is the surface tension and the primes indicate dimensional quantities. This 
expression combined with Bernoulli’s equations leads to the proper replacement, in 
dimensionless form, for (3.3) : 

(10) 

Here u = g T / p ,  U: is a dimensionless surface-tension parameter. Carrying through the 
analysis as before, one finds that the Fourier transform of the interface displacement 
is now given by 

+ ( k , t )  = ~ ~ ~ ~ [ { l - i k ( l + a P ) [ P k ~ ( 1 - a ) 2 + ( i + P ) ( 1 - P - u k 2 )  I kJ]d )ep l@) t  

#It + A x  + 7 - PWZt + a 4 2 x  + 71 = - V X X .  

+ { 1 + ik( 1 + @) [Pk2( 1 - a)2+ (1 +/I) (1  -P- rk2)  lkl]-4} epz(k) t ] ,  (1 1 . i )  
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where the coefficients in the exponents are given by 

(11 .2 )  
i k (  I + ap)  f [PIC2( 1 - a)2 + ( 1  +/3) (1  -/3- uk2)  I kl]a 

1 + P  
P1,2(k) = 

Examining (1  1 . 2 ) )  i t  is clear that since u is positive pl, are purely imaginary for all 
sufficiently large k .  Thus, although the low-wavenumber modes may be unstable, the 
integral (6) will now converge provided +jo(k) is absolutely integrable. As a consequence 
the initial-value problem will now have a solution for all time, irrespective of the values 
of a and /3, under the mild restriction on qo(k) .  Another consequence is that the case 
a = p = 1 does not lead to a degeneracy and hence in this case the individual modes 
are neutrally stable. An unfortunate result, however, is that  now the integral (6) does 
not lead to a simple closed-form expression even in the case /3 = 1 .  

We now reconsider the example discussed in $3.2  which led to a singularity at t = 1. 
Let /3 = 1, a = - 1 and ?lo(x) = (1+x2)-l. It easily follows from ( l l . l ) ,  ( 11 .2 )  and (6) 
that the interface evolution is now given by 

While it does not appear possible t o  evaluate the integral in closed form, the 
asymptotic behaviour of ~ ( x ,  t )  for large time can be found by Laplace's method. We 
thus find that, provided cos (4x/3u) =j= 0, 

The growth of the interface in the absence of surface tension and its growth when 
surface tension is present are compared in figure 3. It is clear that for small times the 
solutions are very similar, though surface tension does inhibit the growth of the 
interface. The major effect is, however, that the singularity a t  t = 1 is no longer 
present, as all the high-wavenumber modes are now stable. On the other hand the 
unstable low-wavenumber modes do lead to a growth of the interface. It is interesting 
t.onote that, whereasone had an algebraic singularity a t  t = 1 when u = 0, the growth 
is now exponential when u + 0. 

4. The vortex sheet shed by a flat plate 
We now consider the evolution of a vortex sheet shed by a semi-infinite flat plate. 

I n  order to simplify the analysis it will be assumed that the two streams have the same 
density (/3 = 1 )  and that surface tension is absent. The initial-value problem now 
corresponds to the situation where the right half of a rigid plate, which is flat for x < 0, 
suddenly disappears at the initial instant. 

The analysis of this section is related to the paper by Orszag & Crow (1  970) on the 
instability of a vortex sheet leaving a semi-infinite flat plate. Assuming a solution 
harmonic in time, Orszag & Crow determined the spatially growing instability modes 
using the Wiener-Hopf technique. Here we consider the corresponding initial-value 
problem. It is to be noted in the modal approach that, while one can easily consider 
either spatial or temporal harmonic modes in the absence of the plate, one is forced 
in an analysis including the plate to  consider time-harmonic solutions (because 
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solutions with a pure exp(ikx) behaviour are not permitted in the presence of the 
plate). However, for the initial-value problem, i.e. one in which the vortex-sheet 
displacement is prescribed, time-harmonic modes are not very useful as they cannot, 
in any obvious way, be combined to represent the given initial vortex-sheet displace- 
ment. It is for this reason that in the present analysis the initial-value problem is 
solved directly using operational methods. 

4.1 . Formal solution using parubolic co-ordinates 

The standard procedure for solving the mixed boundary-value problem under con- 
sideration is the Wiener-Hopf method. All the references quoted use the method and 
the temptation is to  closely follow the analysis of Orszag & Crow after a Laplace 
transform in time. However, it is soon found that an additive decomposition is 
required which appears difficult to perform explicitly. Here we follow an alternative, 
more elementary, route which leads to  an explicit formula for the vortex-sheet 
displacement. 

Let 6 and p be parabolic co-ordinates defined by 6 + ip = (x + iy)B or 

Now the plate maps to the line c = 0 while the nominal vortex sheet position, y = 0, 
x > 0, maps to ,u = 0; the fluid regions 1 and 2 map to the upper and lower right half- 
planes respectively. Since the mapping is by an analytic function, equations ( 1 )  are 
invariant under the transformation; the boundary conditions (2) lead to decay 
conditions for lpl -+ m. The interface conditions (3) now read 

on p =  0, (15) 

2f;rt + rr = $1, 

2CSt +a?+ = 

while the conditions on the plate lead t o  

One notes that the interface conditions have become more complicated since the 
coefficients in the equations are now no longer constants. Further, the present procedure 
is likely to  be of little use in the acoustic case as the wave equation is not invariant 
under the map (z,y) -+ (6,~). 

Let @(<, p ) ,  $$((, p, p )  and &(c, p, p )  be the LItplace transforms with respect to time 
of ~(6, t ) ,  $l(<,p, t )  and &(t ,p,  t )  respectively. Then the boundary conditions (15) on 
p = 0 transform to 

(17.1)  

(17.2) 

25(Pa;l - $11& 0, 09 + $16 = %{P& - $2(& o,ot> + a&. (17.3) 

I n  the above ~ ~ ( 6 )  is taken to mean the expression resulting from replacing x by 
E2 everywhere in the expression for qo(x) (strictly, one should use the notation ~ ~ ( 6 2 ) ) .  
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Now inspection of the non-constant coefficient equations ( 1 7 )  suggests that some 
advantage might be gained by using full-range Fourier transforms in <. Since the 
physical problem has so far been defined only in the right half-plane 6 2 0, we define 

(18.1) 

(18.2) 

thereby extending the solution domain to the whole of the ( 5 , ~ )  plane. As the 
definitions (18.1) and (18.2) force qhl, to be symmetric and 7 to be anti-symmetric, it 
follows that, provided q51,z are continuously differentiable in 5 and ~ ( 5 )  is continuous 
in 6, the boundary conditions (16) will be automatically satisfied. It is easy to verify 
that Laplace's equation and the boundary conditions (15) are invariant under E-+ - 
with the definitions (18). Thus the definitions (18) are consistent and we can proceed 
to use full-range Fourier transforms in 5. Let us define 

J - -m 

with similar definitions for the pot,entials. 
One proceeds now by Fourier transforming the boundary conditions ( 1 7 )  and 

solving the resulting non-constant coefficient, inhomogeneous, ordinary differential 
equation for C ( k , p )  (the details may be found in Shankar 1980). We thus find 

where 6 and 13' are defined by 

6,s' = { - ( l + a ) & ( l - a ) i } / S p .  (21) 

The vortex sheet displacement can now be recovered by the inversion formula 

This completes the formal solution of the problem, whenever it exists, in the sense that 
~ ( 5 ,  t )  can be determined given €yo(%). The time inversion in (22) can readily be done 
and one finds, when a =+= 1, 

E ( 1  + a') i 
J ( ~ ~ ) / : C O  [ 4(1 -a) 

Jt {I([( - (1 + a)  + (1 - a) i) (k2 - y 2 )  t/2]4) 
[( - ( 1  +a) + (1 -a) i) ( k 2 -  c2)/8]+ 

r(5, t )  = sro(6) +- 

When a = 1 ,  the time inversion leads to the formula 
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1 

0 

FIGURE 4. The evolution of the vortex sheet when a = B = 1 and 
?j,,(x) = ~ x + / , / n  + (2x2- 2) i erf (i~z) e-2. 

4.2 .  An example 

It is clear from formulae (20) - (24)  that, in general, detailed calculations would be 
involved if one wished to compute the evolution of any specific initial profile T,,(x). We 
wish now to give an example for which most of the integrals in question can be 
evaluated in closed form. It turns out that this example can be solved trivially by 
other means but it does give one confidence in the final formulae obtained in 9 4.1. 

Let us for analytical convenience assume both fluids to move at  the same speed, 
i.e. a = 1, and let the initial vortex sheet shape be given by 

qo(x) = 2x*/.Jn -t (2x2- x )  i erf(i4x) e-x. ( 2 5 )  

It turns out (see Shankar 1980) that for this profile the integral over <in ( 2 0 )  can be 
evaluated in closed form, the Fourier inversions over k are standard, and the Laplace 
inversion over p can be considerably simplified to finally yield 

+ ( - v + 5 ~ 2  - 4 ~ 3 )  ( - p-8 e - b i  + 2 ~ 2 ~ - t  e - b i ) )  {erf (i<Jp ,tin) e ip ( t - t2 )  IldP, 
( 2 6 )  

where u = p / ( p + i ) .  Figure 4 shows the evolution of the vortex sheet in this case as 
given by ( 2 6 ) .  Examining figure 4 ,  it now becomes obvioust that the special choice of 
( 2 5 )  and all the calculation leading to ( 2 6 )  is unnecessary ! Since both fluids move at  the 
same speed the disturbance (vorticity) gets carried by the fluids a t  their speed while 
it grows as a result of the instability. This results, since the plate is flat upstream 
of the trailing edge, in the vortex sheet being flat up to a distance t from the trailing 
edge. It follows that, since the plate does not affect the straight tail of the disturbance, 

f The author is most indebted to a referee for having made this fact ‘obvious’ to him by 
giving an ingeniously simple reasoning, based on vorticity distribution arguments, to show that 
(8) holds even in the semi-infinite vortex-sheet case. 
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formula (8) holds even for the semi-infinite vortex sheet. This simplification is possible 
only in the case a = 1.  We note also that (22) and (24) are consequently integral 
representations of (S), although this fact would be hard to  prove directly. 

5. Conclusion 
We have in this paper discussed the initial-value problem for the vortex sheet 

separating two uniform, incompressible fluid regions. It would appear that the linear 
theory considered here would be physically valid a t  least for combinations of 
sufficiently small initial amplitudes and sufficiently small time intervals. Even where 
the present solution breaks down after a finite time interval, it should be a guide for 
sufficiently small times to the solutions that might be obtained with the inclusion of 
the effects of surface tension and viscosity. I n  any case, the simple formulae (7) and (8) 
should be of interest as exact solutions to  an initial-value problem in vortex-sheet 
dynamics. 

It has been shown here that capillarity does indeed suppress the tendency for the 
vortex sheet to  develop singularities. Viscosity should have a similar effect and it 
would be most interesting to  analyse its effects. The latter problem, however, poses 
serious analytical difficulties. One would no longer be able t o  use a potential, the 
linearized equations would involve variable coefficients, the orders of the equations 
would increase and correspondingly the boundary conditions will be more complex. 
If these difficulties are overcome, the resulting solution would provide a most valuable 
extension to the present results. 

I thank the referees for suggestions that considerably improved the first version of 
this paper. I would also like t o  thank Dr K. S. Yajnik for reviving my interest in the 
subject of this paper. 
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